GÊMEOS DIGITAIS NA INDÚSTRIA 5.0: UMA REVISÃO BIBLIOGRÁFICA SOBRE AVANÇOS, DESAFIOS E CRITÉRIOS DE QUALIDADE
Conteúdo do artigo principal
Resumo
Gêmeos digitais são consolidados como uma tecnologia essencial na transformação digital com aplicações em setores como educação, saúde, inovação e gestão de desastres. Este estudo, baseado em uma revisão bibliográfica sistemática, teve como objetivo analisar os avanços, desafios e critérios de avaliação da qualidade dos gêmeos digitais, explorando sua relevância no contexto da Indústria 5.0. Foi utilizado o método de Revisão Sistemática da Literatura e as diretrizes PRISMA. Foram investigados critérios como precisão, interoperabilidade, integridade e segurança, além de soluções tecnológicas como blockchain e aprendizado profundo. Os resultados indicam que, embora os gêmeos digitais apresentem elevado potencial para otimização de processos e apoio à tomada de decisão, desafios como a ausência de padronização e infraestrutura limitada ainda restringem sua implementação. Conclui-se que frameworks padronizados e políticas de segurança são indispensáveis para garantir a confiabilidade e escalabilidade da tecnologia. Este artigo contribui ao fornecer uma análise crítica do estado da arte e ao propor alternativas para futuras pesquisas no campo dos gêmeos digitais.
Detalhes do artigo
Referências
AKHTAR, S. I. et al. Compliance and feedback based model to measure cloud trustworthiness for hosting digital twins. Journal of Cloud Computing, v. 13, n. 1, 2024.
ALDRIDGE, S. Tracking and Spatial Computing Technologies, Virtual Navigation and Ambient Scene Detection Tools, and Motion Planning and Remote Sensing Algorithms in the Metaverse. Linguistic and Philosophical Investigations, v. 22, n. 5, p. 111–127, 2023.
ALI, M. E. et al. Enabling Spatial Digital Twins: Technologies, Challenges, and Future Research Directions. 2023.
CAPPANNARI, L.; VITILLO, A. XR and metaverse software platforms. Roadmapping Extended Reality: Fundamentals and Applications, n. 2021, p. 135–156, 2022.
CHEN, Y. Research on collaborative innovation of key common technologies in new energy vehicle industry based on digital twin technology. Energy Reports, v. 8, p. 15399–15407, 2022.
CUG, J.; PALCAK, L.; MATEI, A. D. Movement and Behavior Tracking Tools, Spatial Computing and Visual Perception Algorithms, and Deep Learning-based Sensing and Digital Twin Technologies in the Virtual Economy of the Metaverse. Linguistic and Philosophical Investigations, v. 22, n. 2022, p. 162–178, 2023.
DA SILVA NETO, O. M.; RUDEK, M. Industrial Layout Mapping by Human-Centered Approach and Computer Vision BT - Product Lifecycle Management. Leveraging Digital Twins, Circular Economy, and Knowledge Management for Sustainable Innovation. (C. Danjou et al., Eds.)Cham: Springer Nature Switzerland, 2024.
DOLGUI, A.; IVANOV, D. Internet of behaviors: conceptual model, practical and theoretical implications for supply chain and operations management. International Journal of Production Research, 2024.
FAN, C. et al. Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. International Journal of Information Management, v. 56, n. December 2019, p. 102049, 2021.
GOURISETTI, S. N. G. et al. A Theoretical Open Architecture Framework and Technology Stack for Digital Twins in Energy Sector Applications. Energies, v. 16, n. 13, 2023.
GUO, J. et al. An enhanced state-aware model learning approach for security analysis in lightweight protocol implementations. Journal of Cloud Computing, v. 13, n. 1, 2024.
HAGEN, A.; ANDERSEN, T. M. Asset management, condition monitoring and Digital Twins: damage detection and virtual inspection on a reinforced concrete bridge. Structure and Infrastructure Engineering, v. 20, n. 7–8, p. 1242–1273, 2024.
HASAN, H. R. et al. Non-fungible tokens (NFTs) for digital twins in the industrial metaverse: Overview, use cases, and open challenges. Computers and Industrial Engineering, v. 193, n. July 2023, 2024.
HUANG, J.; YI, J. The key security management scheme of cloud storage based on blockchain and digital twins. Journal of Cloud Computing, v. 13, n. 1, 2024.
JAVED, A. et al. The role of advanced technologies and supply chain collaboration: during COVID-19 on sustainable supply chain performance. Discover Sustainability, v. 5, n. 1, 2024.
KANG, H. S.; LEE, J. Y. Toward cyber-physical systems for monitoring and analyzing energy consumption of machine tools. International Journal of Computer Integrated Manufacturing, v. 00, n. 00, p. 1–22, 2024.
KULKARNI, C. et al. Hybrid disease prediction approach leveraging digital twin and metaverse technologies for health consumer. BMC Medical Informatics and Decision Making, v. 24, n. 1, p. 1–14, 2024.
LEE, J.; PARK, T.; SUNG, W. Digital twin based DDPG reinforcement learning for sum-rate maximization of AI-UAV communications. Eurasip Journal on Wireless Communications and Networking, v. 2024, n. 1, 2024.
LUO, Z. et al. Achromatic diffractive liquid-crystal optics for VR displays. v. 12913, p. 6, 2024.
LV, Z. et al. BlockNet: Beyond reliable spatial Digital Twins to Parallel Metaverse. Patterns, v. 3, n. 5, p. 100468, 2022a.
LV, Z. et al. BlockNet: Beyond reliable spatial Digital Twins to Parallel Metaverse. Patterns, v. 3, n. 5, p. 10–11, 2022b.
MARTÍNEZ-GUTIÉRREZ, A. et al. Towards industry 5.0 through metaverse. Robotics and Computer-Integrated Manufacturing, v. 89, n. February, p. 102764, 2024.
MIAO, Z.; LI, W.; PAN, X. Multivariate time series collaborative compression for monitoring systems in securing cloud-based digital twin. Journal of Cloud Computing, v. 13, n. 1, 2024.
MOHER, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, v. 6, n. 7, p. e1000097, jul. 2009.
PAN, X. et al. Deep learning based approaches from semantic point clouds to semantic BIM models for heritage digital twin. Heritage Science, v. 12, n. 1, p. 1–17, 2024.
PATTERSON, E. A. Engineering design and the impact of digital technology from computer-aided engineering to industrial metaverses: A perspective. Journal of Strain Analysis for Engineering Design, v. 59, n. 4, p. 303–305, 2024.
PENA-RIOS, A.; WU, J. G. Guest Editorial The Metaverse and the Future of Education. IEEE Transactions on Learning Technologies, v. 16, n. 6, p. 887–891, 2023.
PODÉUS, H. et al. A physiologically-based digital twin for alcohol consumption—predicting real-life drinking responses and long-term plasma PEth. npj Digital Medicine, v. 7, n. 1, 2024.
QU, Y.; ZHAO, N.; ZHANG, H. Digital Twin Technology of Human–Machine Integration in Cross-Belt Sorting System. Chinese Journal of Mechanical Engineering (English Edition), v. 37, n. 1, 2024.
ROULLIER, B. et al. Automated visual quality assessment for virtual and augmented reality based digital twins. Journal of Cloud Computing, v. 13, n. 1, 2024.
SABATUCCI, L. et al. Envisioning Digital Practices in the Metaverse: A Methodological Perspective †. Future Internet, v. 15, n. 12, p. 1–19, 2023.
STAFFS, K. Guidelines for performing systematic literature reviews in software engineering. Technical report, Ver. 2.3 EBSE Technical Report. EBSE, n. January 2007, p. 1–57, 2007.
STATES, U.; CITY, C.; STATES, U. Jewell, S. p. 1–2, 2024.
SURIAN, N. U. et al. A digital twin model incorporating generalized metabolic fluxes to identify and predict chronic kidney disease in type 2 diabetes mellitus. npj Digital Medicine, v. 7, n. 1, 2024.
TU, X. et al. Architecture for data-centric and semantic-enhanced industrial metaverse: Bridging physical factories and virtual landscape. Journal of Manufacturing Systems, v. 74, n. February, p. 965–979, 2024.
VALANDRO, R.; NOGUEIRA, J. C.; RUDEK, M. A Method to Interactive Simulations of Industrial Environments Based on Immersive Technologies BT - Product Lifecycle Management. Leveraging Digital Twins, Circular Economy, and Knowledge Management for Sustainable Innovation. (C. Danjou et al., Eds.)Cham: Springer Nature Switzerland, 2024.
WALLACE, S. Digital Twin and Metaverse Technologies, Geospatial Simulation and Sensor Fusion Tools, and Object Perception and Motion Control Algorithms in Immersive Hyper-Connected Virtual Spaces. Linguistic and Philosophical Investigations, v. 22, n. 2022, p. 264–280, 2023.
XIANG, W. et al. Advanced Manufacturing in Industry 5.0: A Survey of Key Enabling Technologies and Future Trends. IEEE Transactions on Industrial Informatics, v. 20, n. 2, p. 1055–1068, 2024.
YAO, X. et al. Enhancing wisdom manufacturing as industrial metaverse for industry and society 5.0. Journal of Intelligent Manufacturing, v. 35, n. 1, p. 235–255, 2024.
ZHANG, X. et al. Designing the transition to operations in large inter-organizational projects: Strategy, structure, process, and people. Journal of Operations Management, v. 70, n. 1, p. 107–136, 2024.