Avaliação da resiliência de sistemas de distribuição elétrica – Um mapeamento sistemático da literatura
Conteúdo do artigo principal
Resumo
Avaliar a resiliência de sistemas de distribuição é fundamental para garantir o fornecimento contínuo e confiável de energia elétrica, considerando o possível impacto de eventos climáticos extremos na rede de distribuição de energia elétrica. Esses eventos extremos são definidos como eventos com baixa probabilidade de ocorrência, mas com grande impacto na rede de distribuição. É importante fazer um levantamento do estado da arte, buscando identificar como esse tema tem sido estudado e modelado na literatura técnica. Assim, este artigo apresenta um mapeamento sistemático da literatura sobre avaliação da resiliência de sistemas de distribuição. Os resultados mostram que ventos fortes são os eventos climáticos mais estudados, enquanto postes e linhas aéreas de distribuição são os equipamentos mais modelados. Além disso, a simulação de Monte Carlo parece ser a técnica mais comumente utilizada para análise de resiliência, considerando o protocolo de pesquisa utilizado. Esse mapeamento também destaca a necessidade de integrar técnicas de aprendizado de máquina para melhorar as avaliações de resiliência.
Detalhes do artigo
Referências
ABDELMALAK, M; COX, J; ERICSON, S; HOTCHKISS, E; BENIDRIS, M; “Quantitative Resilience-Based Assessment Framework Using EAGLE-I Power Outage Data,” IEEE Access, vol. 11, pp. 7682–7697, 2023, doi: 10.1109/ACCESS.2023.3235615.
AMICARELLI, E; MASI, M; SUICH, A; VALTORTA, G; “Assessment of the resilience of the electrical distribution grid: e-distribuzione approach” 2018 AEIT International Annual Conference : 3-5 October 2018, Bari, Italy. Institute of Electrical and Electronics Engineers, 2018, doi: 10.23919/AEIT.2018.8577322.
AMIRIOUN, M. H; AMINIFAR, F; LESANI, H; SHAHIDEHPOUR M; “Metrics and quantitative framework for assessing microgrid resilience against windstorms,” International Journal of Electrical Power and Energy Systems, vol. 104, pp. 716–723, Jan. 2019, doi: 10.1016/j.ijepes.2018.07.025.
ANEEL Procedimentos da Distribuição – PRODISC. Módulo 1. 2018b.
ATRIGNA, M; BUONANNO, A; CARLI, R; CAVONE G; SCARABAGGIO P; VALENTI, M; GRADITI, G; DOTOLI, M; “Effects of Heatwaves on the Failure of Power Distribution Grids: A Fault Prediction System Based on Machine Learning” 21st International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings. 2021. https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584751
BAJPAI, P; CHANDA, S; SRIVASTAVA, A. K; “A Novel Metric to Quantify and Enable Resilient Distribution System Using Graph Theory and Choquet Integral,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2918–2929, Jul. 2018, doi: 10.1109/TSG.2016.2623818.
BESSANI, M; MASSIGNAN J. A. D; FANUCCHI R. Z; “Probabilistic Assessment of Power Distribution Systems Resilience Under Extreme Weather”. in IEEE Systems Journal, vol. 13, no.2, pp. 1747-1756, 2019. doi: 10.1109/JSYST.2018.2853554.
BOSISIO, A; MONCECCHI, M; MOROTTI, A; MERLO, M; “Machine learning and GIS approach for electrical load assessment to increase distribution networks resilience,” Energies, vol. 14, no. 14, Jul. 2021, doi: 10.3390/en14144133.
CATUCCI, A; HOLLAND, C; Formação de ciclone bomba; e passagem de tempestades provocam ao menos 3 mortes em SC. G1, 30 jun. 2020. Disponível em: https://g1.globo.com/sc/santa-catarina/noticia/2020/06/30/fortes-ventos-e-chuva-provocam-estragos-em-cidades-de-sc.ghtml. Acesso em: 11 maio 2024.
CHEN, H; WANG, J; ZHU, J; XIONG, X; WANG, W; YANG, H; “A Two-stage Stochastic Mixed-integer Programming Model for Resilience Enhancement of Active Distribution Networks,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 1, pp. 94–106, Jan. 2023, doi: 10.35833/MPCE.2022.000467.
CHANDA, S; SRIVASTAVA, A. k; MOHANPURKAR, M. U; HOVSAPIAN, R; “Quantifying Power Distribution System Resiliency Using Code-Based Metric” 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2016, doi: 10.1109/TIA.2018.2808483.
CHEN, Y; JACOB, R. A; GEL, Y. R; ZHANG, J; POOR, H. V; “Learning Power Grid Outages With Higher-Order Topological Neural Networks,” IEEE Transactions on Power Systems, vol. 39, no. 1, pp. 720–732, Jan. 2024, doi: 10.1109/TPWRS.2023.3266956.
CHI, Y; CHU, Y; HU, C; FENG, S; “A state-of-the-art literature survey of power distribution system resilience assessment” IEEE Power & Energy Society General Meeting. 2018. pp. 1-5. https://doi.org/10.1009/PESGM .2018.8586495.
CIAPESSONI, E; CIRIO, D; PITTO, A; “A Cost–Benefit Analysis Framework for Power System Resilience Enhancement Based on Optimization via Simulation Considering Climate Changes and Cascading Outages,” Energies, vol. 16, no. 13, Jul. 2023, doi: 10.3390/en16135160.
CRESTA, M; GATTA, F. M; GERI, A.; MACCIONI, M; PAULUCCI, M; “Resilience assessment in distribution grids: A complete simulation model,” Energies, vol. 14, no. 14, Jul. 2021, doi: 10.3390/en14144303.
DEHGHANI, F; MOHAMMADI, M; KARIMI, M; “Age-dependent resilience assessment and quantification of distribution systems under extreme weather events,” International Journal of Electrical Power and Energy Systems, vol. 150, Aug. 2023, doi: 10.1016/j.ijepes.2023.109089.
DEHGHANI, N. L; JEDDI, A. B; SHAFIEEZADEH, A; “Intelligent hurricane resilience enhancement of power distribution systems via deep reinforcement learning”. 2021. Applied Energy, 285, 116355.
DE VANNA, G; LONGO, M; FOIADELLI, F; PANTELI, M; GALEELA, M; “Reliability and Resilience Analysis and Comparison of Off-Grid Microgrids”, Virtual conference, UPEC 2020 : 2020 55th International Universities Power Engineering Conference (UPEC) : verifying the targets : conference proceedings : Torino, Italy, 1-4 September 2020. IEEE, 2020, doi: 10.1109/UPEC49904.2020.9209845.
DU, Y; ZHANG, T; ZHANG, W; “Enhancing Distribution System Resilience to Extreme Weather Using Multi-Energy Coordination.”, 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 2019, pp. 1-5, doi: 10.1109/APPEEC45492.2019.8994619.
DWIVEDI, D; YEMULA, P. K; PAL, M; “Evaluating the planning and operational resilience of electrical distribution systems with distributed energy resources using complex network theory,” Renewable Energy Focus , vol. 46, pp. 156–169, Sep. 2023, doi: 10.1016/j.ref.2023.06.007.
FANUCCHI, R. Z. et al. Stochastic indexes for power distribution systems resilience analysis. IET Generation, Transmission and Distribution, v. 13, n. 12, p. 2507–2516, 18 jun. 2019. doi: 10.1049/iet-gtd.2018.6667.
GAUTAM, P.; PIYA, P.; KARKI, R. Resilience assessment of distribution systems integrated with distributed energy resources. IEEE Transactions on Sustainable Energy, v. 12, n. 1, p. 338–348, 1 jan. 2021. doi: 10.1109/TSTE.2020.2994174.
GHOSH, P.; DE, M. Resilience-oriented planning for active distribution systems: A probabilistic approach considering regional weather profiles. International Journal of Electrical Power and Energy Systems, v. 158, 1 jul. 2024. 10.1016/j.ijepes.2024.109976
HAIDACHI, I; ALBARYAK, S; “A Survey on Simulation of Power Systems Resilience Under Extreme Weather Events.”. 2019 IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1-6, doi: 10.1109/PTC.2019.8810541.
HOU, H. et al. Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming. Applied Energy, v. 338, 15 maio 2023. doi: 10.1016/j.apenergy.2023.120892.
HUANG, Y. et al. Resilient Distribution Networks by Microgrid Formation Using Deep Reinforcement Learning. IEEE Transactions on Smart Grid, v. 13, n. 6, p. 4918–4930, 1 nov. 2022. doi: 10.1109/TSG.2022.3179593.
HUGHES, W. et al. Damage modeling framework for resilience hardening strategy for overhead power distribution systems. Reliability Engineering and System Safety, v. 207, 1 mar. 2021. doi: 10.1016/j.ress.2020.107367.
HUGHES, W. et al. Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model. Reliability Engineering and System Safety, v. 248, 1 ago. 2024. doi: 10.1016/j.ress.2024.110169.
JIANG, J. et al. Stochastic Planning for Resilient Infrastructure of Distribution System Under Extreme Weather Events. IEEE Transactions on Industry Applications, v. 60, n. 2, p. 2191–2200, 2023. doi: 10.1109/TIA.2023.3334220.
KANDAPERUMAL, G.; PANDEY, S.; SRIVASTAVA, A. AWR: Anticipate, Withstand, and Recover Resilience Metric for Operational and Planning Decision Support in Electric Distribution System. IEEE Transactions on Smart Grid, v. 13, n. 1, p. 179–190, 1 jan. 2022. doi: 10.1109/TSG.2021.3119508.
LEE, S.; HAM, Y. Probabilistic framework for assessing the vulnerability of power distribution infrastructures under extreme wind conditions. Sustainable Cities and Society, v. 65, 1 fev. 2021. doi: 10.1016/j.scs.2020.102587.
LEE, S. M. et al. Quantifying the Power System Resilience of the US Power Grid Through Weather and Power Outage Data Mapping. IEEE Access, v. 12, p. 5237–5255, 2024. doi: 10.1109/ACCESS.2023.3347129.
LEITE, J. B. et al. Resiliency Assessment in Distribution Networks Using GIS-Based Predictive Risk Analytics. IEEE Transactions on Power Systems, v. 34, n. 6, p. 4249–4257, 1 nov. 2019. doi: 10.1109/TPWRS.2019.2913090.
LU, J; GUO, J; JIAN, Z; YANG, Y; TANG, W; “Dynamic Assessment of Resilience of Power Transmission Systems in Ice Disasters” 2018 International Conference on Power System Technology (POWERCON). IEEE, 2018, doi: 10.1109/POWERCON.2018.8601802.
LUO, D. et al. Evaluation Method of Distribution Network Resilience Focusing on Critical Loads. IEEE Access, v. 6, p. 61633–61639, 2018. doi: 10.1109/ACCESS.2018.2872941.
MA, S. et al. Resilience enhancement of distribution grids against extreme weather events. IEEE Transactions on Power Systems, v. 33, n. 5, p. 4842–4853, 1 set. 2018. doi: 10.1109/PESGM40551.2019.8974122.
MORRIS, K; KIM D. S; “Availability and resiliency analysis of modern distribution grids using stochastic reward nets” 2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia) : 4-7 December 2017 : Auckland, New Zealand. Institute of Electrical and Electronics Engineers, 2017, doi:.10.1109/ISGT-Asia.2017.8378407
MUKHERJEE, M. et al. A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. Anais...Institute of Electrical and Electronics Engineers Inc., 12 out. 2020. doi: 10.1109/PESGM40551.2019.8974122.
NAJAFI TARI, A.; SEPASIAN, M. S.; TOURANDAZ KENARI, M. Resilience assessment and improvement of distribution networks against extreme weather events. International Journal of Electrical Power and Energy Systems, v. 125, 1 fev. 2021. doi: 10.1016/j.ijepes.2020.106414.
NAVARRO-ESPINOSA, A. et al. IMPROVING DISTRIBUTION NETWORK RESILIENCE AGAINST EARTHQUAKES. IET International Conference on Resilience of Transmission and Distribution Networks (RTDN 2017), Birmingham, 2017, pp. 1-6, doi: 10.1049/cp.2017.0339.
NGUYEN, H. T.; MUHS, J.; PARVANIA, M. Preparatory Operation of Automated Distribution Systems for Resilience Enhancement of Critical Loads. IEEE Transactions on Power Delivery, v. 36, n. 4, p. 2354–2362, 1 ago. 2021. doi: 10.1109/TPWRD.2020.3030927.
NGUYEN, H. T; MUHS, J. W; PARVANIA, M; “Assessing impacts of energy storage on resilience of distribution systems against hurricanes”. 2019. Journal of Modern Power Systems and Clean Energy, 7(4), 731–740. https://doi.org/10.1007/s40565-019-0557-y.
NOEBELS, M.; QUIROS-TORTOS, J.; PANTELI, M. Decision-Making Under Uncertainty on Preventive Actions Boosting Power Grid Resilience. IEEE Systems Journal, v. 16, n. 2, p. 2614–2625, 1 jun. 2022. doi: 10.1109/JSYST.2021.3108221.
OH, S. et al. Achieving Robust and Accurate Power Distribution Grid Damage Forecasting via a Two-Stage Forecasting Method. Proceedings of 2020 4th International Conference on Green Energy and Applications, ICGEA 2020. Anais...Institute of Electrical and Electronics Engineers Inc., 1 mar. 2020. doi: 10.1109/ICGEA49367.2020.239698.
PAUL, S. et al. Q-learning-based impact assessment of propagating extreme weather on distribution grids. IEEE Power and Energy Society General Meeting. Anais...IEEE Computer Society, 2 ago. 2020. doi: 10.1109/PESGM41954.2020.9281506.
PAUL, S.; DING, F. Identification of Worst Impact Zones for Power Grids During Extreme Weather Events Using Q-learning2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). 10.1109/ISGT45199.2020.9087654.
PITTO, A. et al. Analytical modeling of overhead line vulnerability to wet snow events for resilience assessment. 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 2019, pp. 1-6, doi: 10.23919/AEIT.2019.8893309.
POUDEL, S.; DUBEY, A.; BOSE, A. Risk-Based Probabilistic Quantification of Power Distribution System Operational Resilience. IEEE Systems Journal, v. 14, n. 3, p. 3506–3517, 1 set. 2020. doi: 10.1109/JSYST.2019.2940939.
POUDEL, S; DUBEY, A; BOSE, A; “Probabilistic Quantification of Power Distribution System Operational Resilience” 2019 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2019, doi: 10.1109/PESGM40551.2019.8973967.
PRIYA, E.; PREETHA, J. R. Integrated Assessment and Enhancement Method for Resiliency Improvement under HILP Events in Distribution Power Networks INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH E. Priya and J. Roselyn Preetha. doi:10.20508/ijre.v13i2.13711.g8719.
SABOUHI, H. et al. Electricity distribution grids resilience enhancement by network reconfiguration. International Transactions on Electrical Energy Systems, v. 31, n. 11, 1 nov. 2021. doi: 10.1002/2050-7038.13047.
SERRANO-FONTOVA, A. et al. A novel resilience assessment for active distribution networks including a DER voltage regulation scheme considering windstorms. International Journal of Electrical Power and Energy Systems, v. 153, 1 nov. 2023. doi: 10.1016/j.ijepes.2023.109310.
SHI, Q. et al. Resilience-Oriented DG Siting and Sizing Considering Stochastic Scenario Reduction. IEEE Transactions on Power Systems, v. 36, n. 4, p. 3715–3727, 1 jul. 2021. doi: 10.1109/TPWRS.2020.3043874.
WANG, Y. et al. A Resilience Assessment Framework for Distribution Systems under Typhoon Disasters. IEEE Access, v. 9, p. 155224–155233, 2021. doi: 10.1109/ACCESS.2021.3128967.
WU, Y. et al. Resilience enhancement for urban distribution network via risk-based emergency response plan amendment for ice disasters. International Journal of Electrical Power and Energy Systems, v. 141, 1 out. 2022. doi: 10.1016/j.ijepes.2022.108183.
YANG, F. et al. Assessing the power grid vulnerability to extreme weather events based on long-term atmospheric reanalysis. Stochastic Environmental Research and Risk Assessment, v. 37, n. 11, p. 4291–4306, 1 nov. 2023. doi: 10.1007/s00477-023-02508-y.
ZHAI, B. et al. Pre-event Resilience Enhancement Strategy for Distribution Systems Based on Dueling DDQN. 2021 IEEE 4th International Conference on Electronics Technology, ICET 2021. Anais...Institute of Electrical and Electronics Engineers Inc., 7 maio 2021. doi: 10.1109/ICET51757.2021.9450973.
ZHANG, C. et al. Distributionally robust resilience optimization of post-disaster power system considering multiple uncertainties. Reliability Engineering and System Safety, v. 251, 1 nov. 2024. doi: 10.1016/j.ress.2024.110367.