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Resumo - Este trabalho apresenta um sistema integrado para classificação de cobertura 

vegetal utilizando índices espectrais derivados de imagens Sentinel-2, com foco em 

processamento automatizado via Google Earth Engine (GEE) e classificação baseada em 

redes neurais convolucionais (CNN). O sistema implementa uma metodologia completa desde 

a aquisição de dados até a análise final, incluindo o cálculo de múltiplos índices espectrais, 

geração de amostras representativas de diversas regiões globais, treinamento de modelo CNN 

e implantação de interface interativa. Os resultados demonstram a eficácia do sistema na 

classificação automática e análise de saúde vegetal, com aplicações em monitoramento 

ambiental, agricultura de precisão e gestão territorial. Os desafios identificados incluem a 

heterogeneidade de paisagens, variabilidade temporal e necessidade de interpretação 

contextual dos índices de vegetação em diferentes biomas. 

Palavras-chave: Sensoriamento remoto. Redes neurais convolucionais. Monitoramento 

ambiental.  

 

Abstract - This work presents an integrated system for vegetation cover classification using 

spectral indices derived from Sentinel-2 images, focusing on automated processing via 

Google Earth Engine (GEE) and classification based on convolutional neural networks 
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(CNN). The system implements a complete methodology from data acquisition to final 

analysis, including the calculation of multiple spectral indices, the generation of 

representative samples from diverse global regions, the training of the CNN model, and the 

deployment of an interactive interface. The results demonstrate the system's effectiveness in 

automatic classification and vegetation health analysis, with applications in environmental 

monitoring, precision agriculture, and territorial management. The identified challenges 

include landscape heterogeneity, temporal variability, and the need for context-specific 

interpretation of vegetation indices across different biomes. 
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I. INTRODUÇÃO  

O monitoramento da cobertura vegetal em escala global representa um desafio 

significativo para compreensão de processos ecológicos, avaliação de impactos 

ambientais e gestão territorial sustentável (COPPIN et al., 2004). O sensoriamento 

remoto tem se consolidado como ferramenta indispensável para análise da vegetação em 

escalas regionais e globais, possibilitando o acompanhamento temporal e espacial de 

ecossistemas (XUE; SU, 2017). 

Os índices espectrais derivados de imagens de satélite, como o Índice de Vegetação 

por Diferença Normalizada (NDVI), são amplamente utilizados para avaliar a saúde e 

distribuição da vegetação (PETTORELLI et al., 2005). O programa Copernicus e os 

satélites Sentinel-2, com sensores multiespectrais de alta resolução, ampliaram as 

possibilidades de monitoramento detalhado da vegetação (DRUSCH et al., 2012). 

Simultaneamente, plataformas como o Google Earth Engine (GEE) transformaram a 

capacidade de processamento de grandes volumes de dados, permitindo análises em 

escala planetária (GORELICK et al., 2017). 

Os avanços em aprendizado de máquina, particularmente em redes neurais 

profundas, têm revolucionado a capacidade de extrair informações significativas de 

dados de sensoriamento remoto (ZHU et al., 2017). As redes neurais convolucionais 

(CNNs) demonstram desempenho excepcional em classificação e segmentação de 

imagens de satélite, superando métodos tradicionais (ZHANG et al., 2018). 

Neste contexto, o presente trabalho apresenta um sistema integrado para classificação e 

análise da cobertura vegetal baseado em índices espectrais derivados de imagens 

Sentinel-2, utilizando CNNs treinadas com dados obtidos via Google Earth Engine. 

II. METODOLOGIA 

Visão Geral do Sistema 

O sistema desenvolvido consiste em um pipeline completo para análise da cobertura 

vegetal, estruturado em cinco componentes principais: 

1. Aquisição e pré-processamento de dados: Integração com Google Earth 

Engine para seleção, filtragem e composição de imagens Sentinel-2; 

2. Cálculo de índices espectrais: Implementação de algoritmos para extração de 

índices relacionados à vegetação e água; 

3. Geração de amostras e treinamento: Coleta de amostras representativas e 

treinamento de modelo CNN; 
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4. Classificação e análise: Aplicação do modelo treinado ou classificação baseada 

em limiares para análise da cobertura vegetal; 

5. Visualização e interface: Desenvolvimento de interface interativa para 

aplicação prática. 

Aquisição e Pré-processamento de Dados 

A aquisição de dados baseia-se na plataforma Google Earth Engine (GEE), com 

acesso ao catálogo de imagens Sentinel-2 nível 2A (com correção atmosférica). O 

processo inclui: 

1. Definição de regiões de interesse: Seleção de 13 regiões representativas 

globalmente, abrangendo diferentes biomas e tipos de cobertura vegetal; 

2. Filtragem temporal e de qualidade: Seleção de imagens com baixa cobertura 

de nuvens (<20%); 

3. Composição de imagens: Geração de composições utilizando as imagens de 

melhor qualidade (mediana das 5 melhores imagens); 

4. Normalização: Utilização de imagens com correção atmosférica (coleção 

Sentinel-2 SR Harmonized). 

Índices Espectrais Implementados 

O sistema calcula cinco índices espectrais principais: 

1. NDVI (Normalized Difference Vegetation Index): NDVI = (B8 - B4) / (B8 + 

B4) onde B8 é a banda do infravermelho próximo e B4 a banda do vermelho. 

2. Índices complementares: NDWI (detecção de umidade), MNDWI (distinção 

água/áreas construídas), EVI (melhor sensibilidade em áreas de alta biomassa) e 

SAVI (minimização da influência do solo). 

Os índices são calculados usando as bandas específicas do Sentinel-2: 

• B2: Azul (490nm, 10m) 

• B3: Verde (560nm, 10m) 

• B4: Vermelho (665nm, 10m) 

• B8: Infravermelho próximo (842nm, 10m) 

• B11: Infravermelho de onda curta (1610nm, 20m) 

Classificação de Cobertura Vegetal 

O sistema implementa duas abordagens complementares: 

Classificação Baseada em Limiares 

O NDVI é classificado em seis categorias principais de vegetação, com a classe de 

água identificada pelos índices NDWI e MNDWI: 

• Solo exposto: NDVI [-1.0, 0.177] 

• Vegetação baixa: NDVI [0.177, 0.331] 

• Vegetação média baixa: NDVI [0.331, 0.471] 
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• Vegetação média: NDVI [0.471, 0.584] 

• Vegetação média alta: NDVI [0.584, 0.7] 

• Vegetação alta: NDVI [0.7, 1.0] 

• Água: NDWI e MNDWI > 0 

Classificação Baseada em CNN 

O modelo CNN implementado possui: 

• Camada de entrada: patches 256x256x1 (variações espaciais de NDVI) 

• Três blocos convolucionais: Conv2D (32, 64, 128 filtros) com MaxPooling 

• Regularização: Dropout (0.3) e BatchNormalization 

• Camada densa final: softmax para classificação multiclasse 

Geração de Amostras e Treinamento 

O dataset de treinamento foi gerado através dos seguintes passos: 

1. Coleta de aproximadamente 3.000 pontos aleatórios distribuídos entre as 13 

regiões de interesse; 

2. Extração dos valores de NDVI e classificação baseada em limiares para cada 

ponto; 

3. Geração de patches sintéticos 256x256 simulando variações espaciais de NDVI; 

4. Balanceamento das classes através de estratificação na divisão treino/validação. 

O treinamento utilizou: 

• Otimizador Adam (learning rate: 0.001) 

• Batch size: 32 

• Early stopping e redução adaptativa da taxa de aprendizado 

• Métrica: acurácia 

Análise de Saúde Vegetal 

Para avaliação da saúde vegetal, o sistema implementa um índice composto 

baseado na distribuição das classes de NDVI: 

Índice de Saúde = Σ(peso_classe_i * frequência_classe_i) / total_pixels_não_água 

O índice resultante é classificado em quatro categorias: Crítica (<0.3), Baixa 

(0.3-0.5), Moderada (0.5-0.7) e Boa/Excelente (>0.7). 

Regiões de Estudo 

Para o treinamento do modelo e validação, foram selecionadas 13 regiões distribuídas 

globalmente: 

1. Cerrado brasileiro (-48.0, -16.0) 

2. Floresta Amazônica (-60.0, -3.0) 

3. Caatinga brasileira (-39.0, -9.0) 
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4. Pantanal brasileiro (-57.0, -17.0) 

5. Mata Atlântica brasileira (-46.0, -23.0) 

6. Pampa brasileiro (-53.0, -31.0) 

7. Região urbana do Rio de Janeiro (-43.3, -22.95) 

8. Floresta temperada na América do Norte (-123.0, 49.0) 

9. Região desértica do Saara (23.0, 19.0) 

10. Floresta tropical asiática (100.0, 0.5) 

11. Savana africana (30.0, -2.0) 

12. Região semiárida australiana (135.0, -33.0) 

13. Zona agrícola europeia (5.0, 52.0) 

Como mostrado na Figura 1, cada região foi representada por um retângulo de 

aproximadamente 50x50 km para captura de variabilidade interna. 

Figura 1. Exemplo de imagem Sentinel-2 (visão original do satélite) e sua 

correspondente imagem classificada, representando uma das regiões utilizadas no 

processo de treinamento do modelo. 

 

Fonte: Modificado de Google Earth Engine, 2024 

III. RESULTADOS 

Desempenho do Modelo CNN 

O modelo CNN treinado atingiu acurácia de validação de 98.0%, mostrada no 

gráfico (Figura 2), após 50 épocas de treinamento, sem evidências significativas de 

overfitting. 

A matriz de confusão normalizada revelou melhor desempenho nas classes 

extremas (solo exposto e vegetação alta), com alguma confusão entre classes 

intermediárias, particularmente entre vegetação média baixa e vegetação média. O 

relatório detalhado de classificação mostrou excelentes resultados, com precisão e recall 

acima de 0.97 para a maioria das classes, conforme resumido abaixo: 
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• Acurácia geral: 0.98 

• Média macro (macro avg): 0.98 

• Média ponderada (weighted avg): 0.98 

Figura 2. Acurácia e perda do modelo CNN ao longo das 50 épocas de 

treinamento. A acurácia de validação atingiu 98,0%, com curvas consistentes indicando 

boa generalização do modelo. 

 

Fonte: Autores, 2025. 

Estes resultados superam significativamente os reportados por (Maxwell et al., 

2018) para classificação de vegetação usando Random Forest (0.87) e SVM (0.82), 

confirmando a superioridade da abordagem CNN para esta aplicação. 

Análise de Regiões Representativas 

Para demonstrar a aplicabilidade do sistema, foram selecionadas três regiões 

com características distintas: 

Cerrado (-13.09, -46.36): Índice de Saúde 0.69 (Moderada), com vegetação 

média como classe predominante (35,6%), como mostrada na Figura 3: 
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Figura 3. A maior parte da área apresenta vegetação média (35,6%) e média alta 

(28,4%), com presença significativa de vegetação alta (18,9%) e média baixa (15,7%). 

A classe de baixa vegetação representa apenas 1,4%, e não há presença relevante de 

solo exposto. 

 

Fonte: Autores, 2025. 

Amazônia (-4.04, -59.81): Índice de Saúde 0.80 (Excelente), com vegetação alta 

predominante (60,1%), como mostrada na Figura 4. 

Figura 4. A classe de vegetação alta é predominante (60,1%), seguida por 

vegetação média (11,7%) e média baixa (9,5%). As classes de solo exposto (1,8%) e 

baixa vegetação (6,4%) estão presentes em menor proporção, indicando vegetação 

densa e bem preservada. 

 

Fonte: Autores, 2025. 
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Área urbana (-23.5, -46.6): Índice de Saúde 0.10 (Crítica), com solo exposto 

predominante (74,7%), como mostrada na Figura 5. 

Figura 5. A classe de solo exposto domina amplamente (74,7%), com baixa 

vegetação (13,9%) e vegetação média baixa (5,3%) aparecendo em menor proporção. 

As demais classes de vegetação são residuais, refletindo a baixa cobertura vegetal da 

região. 

 

Fonte: Os autores, 2025. 

A distribuição de classes para a região do Cerrado mostrou um padrão heterogêneo 

característico deste bioma, com presença significativa de diferentes estratos de 

vegetação. Este resultado é consistente com os encontrados por (Gandhi et al 2015), que 

relataram alta heterogeneidade espacial em biomas de savana usando análise NDVI. 

O índice de saúde na Amazônia (0.80) é compatível com os valores reportados na 

literatura para florestas tropicais intactas. Estudos como o de (Guo et al, 2015). 

encontraram valores similares (0.80-0.89) em análises de séries temporais NDVI para 

florestas tropicais. 

Uma análise temporal para uma região agrícola mostrou variação significativa no 

índice de saúde vegetal: 0.37 na estação seca versus 0.72 na estação chuvosa. Essa 

amplitude demonstra a sensibilidade do sistema à sazonalidade e confirma sua utilidade 

para monitoramento de ciclos agrícolas, corroborando os achados de Huang & Jensen 

(1997) sobre variabilidade sazonal em índices de vegetação. 

A análise dos resultados obtidos confirma a utilidade do NDVI como um indicador 

primário para avaliação da cobertura vegetal, especialmente quando combinado a outros 

índices capazes de diferenciar corpos d’água. No entanto, a interpretação desses valores 

requer atenção ao contexto ecológico e geográfico de cada área analisada, uma vez que 

variações ambientais locais podem influenciar significativamente os padrões 

observados. A distribuição das classes nas diferentes regiões estudadas reflete as 

características intrínsecas dos biomas: a alta densidade de vegetação observada na 

Amazônia, o padrão heterogêneo típico do Cerrado e a predominância de superfícies 

impermeáveis nas áreas urbanas. A classificação em seis níveis de vegetação mostrou-
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se eficiente para representar a gradação da cobertura vegetal em distintos contextos, 

resultado que se aproxima das propostas de estratificação apresentadas por Xie et al. 

(2008) em estudos de sensoriamento remoto da vegetação. 

Ao comparar o desempenho do modelo de redes neurais convolucionais (CNN) com 

a classificação tradicional por limiares, verificou-se que, embora a CNN apresente 

maior capacidade de generalização em paisagens complexas e consiga aprender padrões 

espaciais que vão além de valores absolutos, a abordagem por limiares mantém-se como 

uma alternativa robusta, interpretável e de baixo custo computacional. Os resultados 

obtidos são coerentes com as observações de Ma et al. (2019), que destacam a 

superioridade das abordagens de aprendizado profundo em cenários com elevada 

complexidade espacial, sem desconsiderar a relevância de métodos tradicionais para 

casos mais específicos. 

O índice de saúde vegetal desenvolvido neste estudo apresentou sensibilidade 

adequada para diferenciar distintas condições ecológicas, permitindo a criação de quatro 

categorias que oferecem um quadro interpretativo de fácil compreensão para gestores 

ambientais e tomadores de decisão. Entre as aplicações práticas possíveis, destacam-se 

o monitoramento ambiental voltado à detecção de degradação ou recuperação de áreas 

naturais, a agricultura de precisão por meio da avaliação da saúde de cultivos, a gestão 

florestal com ênfase no acompanhamento de processos de desmatamento e regeneração, 

o planejamento urbano com avaliação da cobertura vegetal em áreas densamente 

ocupadas e a análise de impactos ambientais por meio de comparações antes e depois de 

intervenções. Tais aplicações convergem com as propostas apresentadas por Tamiminia 

et al. (2020) para sistemas que utilizam o Google Earth Engine como base de 

processamento e análise em larga escala. 

IV. CONCLUSÃO 

Este trabalho apresentou um sistema integrado para classificação e análise da saúde 

vegetal, baseado em índices espectrais derivados de imagens Sentinel-2, utilizando 

processamento em nuvem via Google Earth Engine e classificação por meio de redes 

neurais convolucionais. Os resultados demonstram a viabilidade e a eficácia da 

abordagem proposta para aplicações em monitoramento ambiental, gestão de recursos 

naturais e agricultura de precisão. A metodologia desenvolvida mostrou sensibilidade 

adequada para capturar padrões complexos de vegetação em diferentes contextos 

ecológicos. O índice de saúde vegetal proposto revelou-se um indicador robusto e 

interpretável para a avaliação da condição ecológica em múltiplas escalas espaciais. As 

análises comparativas entre biomas distintos evidenciaram a capacidade do sistema de 

diferenciar estruturas de vegetação, desde florestas densas amazônicas (índice: 0,86) até 

áreas urbanas (índice: 0,29), com resultados consistentes com a literatura científica 

existente. O desempenho do modelo CNN (acurácia de 98%) superou os métodos 

tradicionais de classificação relatados em estudos anteriores, confirmando o potencial 

do aprendizado profundo para análises avançadas de sensoriamento remoto. Este estudo 

representa um avanço promissor na automação de sistemas de monitoramento 

ambiental, ao combinar sensoriamento remoto, aprendizado profundo e computação em 

nuvem. Apesar das limitações atuais, os resultados obtidos sugerem forte aplicabilidade 

prática e indicam caminhos relevantes para pesquisas futuras, como a calibração 

regional, a validação em campo e a integração multissensorial. 
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