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Resumo - Este trabalho apresenta um sistema integrado para classificacdo de cobertura
vegetal utilizando indices espectrais derivados de imagens Sentinel-2, com foco em
processamento automatizado via Google Earth Engine (GEE) e classificacdo baseada em
redes neurais convolucionais (CNN). O sistema implementa uma metodologia completa desde
a aquisi¢do de dados até a andlise final, incluindo o cdlculo de multiplos indices espectrais,
geracdo de amostras representativas de diversas regioes globais, treinamento de modelo CNN
e implantacdo de interface interativa. Os resultados demonstram a eficdcia do sistema na
classificacdo automdtica e andlise de saude vegetal, com aplicagoes em monitoramento
ambiental, agricultura de precisdo e gestio territorial. Os desafios identificados incluem a
heterogeneidade de paisagens, variabilidade temporal e necessidade de interpretagdo
contextual dos indices de vegetagdo em diferentes biomas.

Palavras-chave: Sensoriamento remoto. Redes neurais convolucionais. Monitoramento
ambiental.

Abstract - This work presents an integrated system for vegetation cover classification using
spectral indices derived from Sentinel-2 images, focusing on automated processing via
Google Earth Engine (GEE) and classification based on convolutional neural networks
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(CNN). The system implements a complete methodology from data acquisition to final
analysis, including the calculation of multiple spectral indices, the generation of
representative samples from diverse global regions, the training of the CNN model, and the
deployment of an interactive interface. The results demonstrate the system's effectiveness in
automatic classification and vegetation health analysis, with applications in environmental
monitoring, precision agriculture, and territorial management. The identified challenges
include landscape heterogeneity, temporal variability, and the need for context-specific
interpretation of vegetation indices across different biomes.
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I. INTRODUCAO

O monitoramento da cobertura vegetal em escala global representa um desafio
significativo para compreensdo de processos ecologicos, avaliagdo de impactos
ambientais e gestdo territorial sustentavel (COPPIN et al., 2004). O sensoriamento
remoto tem se consolidado como ferramenta indispensavel para anélise da vegetacdo em
escalas regionais e globais, possibilitando o acompanhamento temporal e espacial de
ecossistemas (XUE; SU, 2017).

Os indices espectrais derivados de imagens de satélite, como o Indice de Vegetagao
por Diferenca Normalizada (NDVI), sdo amplamente utilizados para avaliar a satde e
distribuicdo da vegetacdo (PETTORELLI et al., 2005). O programa Copernicus € 0s
satélites Sentinel-2, com sensores multiespectrais de alta resolucdo, ampliaram as
possibilidades de monitoramento detalhado da vegetacdo (DRUSCH et al., 2012).
Simultaneamente, plataformas como o Google Earth Engine (GEE) transformaram a
capacidade de processamento de grandes volumes de dados, permitindo anélises em
escala planetaria (GORELICK et al., 2017).

Os avancos em aprendizado de maquina, particularmente em redes neurais
profundas, tém revolucionado a capacidade de extrair informagdes significativas de
dados de sensoriamento remoto (ZHU et al., 2017). As redes neurais convolucionais
(CNNs) demonstram desempenho excepcional em classificacdo e segmentacdo de
imagens de satélite, superando métodos tradicionais (ZHANG et al., 2018).

Neste contexto, o presente trabalho apresenta um sistema integrado para classificagdo e
analise da cobertura vegetal baseado em indices espectrais derivados de imagens
Sentinel-2, utilizando CNNs treinadas com dados obtidos via Google Earth Engine.

II. METODOLOGIA
Visiao Geral do Sistema

O sistema desenvolvido consiste em um pipeline completo para analise da cobertura
vegetal, estruturado em cinco componentes principais:

1. Aquisicio e pré-processamento de dados: Integragdo com Google Earth
Engine para selecao, filtragem e composicdo de imagens Sentinel-2;

2. Calculo de indices espectrais: Implementagdo de algoritmos para extragao de
indices relacionados a vegetacao e agua;

3. Geracao de amostras e treinamento: Coleta de amostras representativas e
treinamento de modelo CNN;
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4. Classificacio e analise: Aplicacdo do modelo treinado ou classificagdo baseada
em limiares para analise da cobertura vegetal;

5. Visualizagdo e interface: Desenvolvimento de interface interativa para
aplicacgdo pratica.

Aquisi¢do e Pré-processamento de Dados

A aquisi¢do de dados baseia-se na plataforma Google Earth Engine (GEE), com
acesso ao catalogo de imagens Sentinel-2 nivel 2A (com correcdo atmosférica). O
processo inclui:

1. Definicio de regides de interesse: Selecio de 13 regides representativas
globalmente, abrangendo diferentes biomas e tipos de cobertura vegetal;

2. Filtragem temporal e de qualidade: Sele¢do de imagens com baixa cobertura
de nuvens (<20%);

3. Composicao de imagens: Geragdo de composi¢des utilizando as imagens de
melhor qualidade (mediana das 5 melhores imagens);

4. Normalizacdo: Utiliza¢do de imagens com corre¢do atmosférica (colegdo
Sentinel-2 SR Harmonized).

Indices Espectrais Implementados
O sistema calcula cinco indices espectrais principais:
1. NDVI (Normalized Difference Vegetation Index): NDVI = (B8 - B4) / (B8 +
B4) onde B8 ¢ a banda do infravermelho proximo ¢ B4 a banda do vermelho.
2. Indices complementares: NDWI (deteccio de umidade), MNDWI (distingao
agua/areas construidas), EVI (melhor sensibilidade em areas de alta biomassa) e

SAVI (minimizagao da influéncia do solo).

Os indices sdo calculados usando as bandas especificas do Sentinel-2:

B2: Azul (490nm, 10m)

B3: Verde (560nm, 10m)

B4: Vermelho (665nm, 10m)

B8: Infravermelho proximo (842nm, 10m)

B11: Infravermelho de onda curta (1610nm, 20m)

Classificacio de Cobertura Vegetal
O sistema implementa duas abordagens complementares:
Classificacao Baseada em Limiares

O NDVI ¢ classificado em seis categorias principais de vegetacao, com a classe de
agua identificada pelos indices NDWI e MNDWI:

e Solo exposto: NDVI [-1.0, 0.177]

e Vegetacdo baixa: NDVI [0.177, 0.331]
e Vegetacao média baixa: NDVI [0.331, 0.471]

v. 47 n. Especial (2025): XLVII International Sodebras Congress. ISSN 1809-3957



e Vegetacdo média: NDVI [0.471, 0.584]

e Vegetacao média alta: NDVI [0.584, 0.7]
e Vegetacdo alta: NDVI [0.7, 1.0]

e Agua: NDWI e MNDWI > 0

Classificacao Baseada em CNN
O modelo CNN implementado possui:

o Camada de entrada: patches 256x256x1 (variagdes espaciais de NDVI)

e Trés blocos convolucionais: Conv2D (32, 64, 128 filtros) com MaxPooling
o Regularizagdo: Dropout (0.3) e BatchNormalization

o (Camada densa final: softmax para classificacdo multiclasse

Geraciao de Amostras e Treinamento
O dataset de treinamento foi gerado através dos seguintes passos:

1. Coleta de aproximadamente 3.000 pontos aleatdrios distribuidos entre as 13
regides de interesse;

2. Extracdo dos valores de NDVI e classificacdo baseada em limiares para cada

ponto;

Geragao de patches sintéticos 256x256 simulando variagdes espaciais de NDVI;

4. Balanceamento das classes através de estratificagdao na divisao treino/validacao.

(O8]

O treinamento utilizou:
e Otimizador Adam (learning rate: 0.001)
e Batch size: 32
o Early stopping e reducdo adaptativa da taxa de aprendizado
e Me¢étrica: acuracia

Analise de Saude Vegetal

Para avaliacdo da satide vegetal, o sistema implementa um indice composto
baseado na distribui¢ao das classes de NDVI:

indice de Saude = X(peso_classe i * frequéncia_classe i)/ total pixels ndo agua

O indice resultante ¢ classificado em quatro categorias: Critica (<0.3), Baixa
(0.3-0.5), Moderada (0.5-0.7) e Boa/Excelente (>0.7).

Regioes de Estudo

Para o treinamento do modelo e validagdo, foram selecionadas 13 regides distribuidas
globalmente:

1. Cerrado brasileiro (-48.0, -16.0)

2. Floresta Amazonica (-60.0, -3.0)
3. Caatinga brasileira (-39.0, -9.0)
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Pantanal brasileiro (-57.0, -17.0)

Mata Atlantica brasileira (-46.0, -23.0)

Pampa brasileiro (-53.0, -31.0)

Regido urbana do Rio de Janeiro (-43.3, -22.95)
Floresta temperada na América do Norte (-123.0, 49.0)
. Regido desértica do Saara (23.0, 19.0)

10. Floresta tropical asiatica (100.0, 0.5)

11. Savana africana (30.0, -2.0)

12. Regido semidrida australiana (135.0, -33.0)

13. Zona agricola europeia (5.0, 52.0)

© 0N oLk

Como mostrado na Figura 1, cada regido foi representada por um retangulo de
aproximadamente 50x50 km para captura de variabilidade interna.

Figura 1. Exemplo de imagem Sentinel-2 (visdo original do satélite) e sua
correspondente imagem classificada, representando uma das regides utilizadas no

processo de treinamento do modelo.
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Fonte: Modificado de Google Earth Engine, 2024
III. RESULTADOS
Desempenho do Modelo CNN

O modelo CNN treinado atingiu acuricia de validagcdo de 98.0%, mostrada no
grafico (Figura 2), apds 50 épocas de treinamento, sem evidéncias significativas de
overfitting.

A matriz de confusdo normalizada revelou melhor desempenho nas classes
extremas (solo exposto e vegetacdo alta), com alguma confusdo entre classes
intermediarias, particularmente entre vegetacdo média baixa e vegetacdo média. O
relatorio detalhado de classificagdo mostrou excelentes resultados, com precisao e recall
acima de 0.97 para a maioria das classes, conforme resumido abaixo:
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e Acuracia geral: 0.98
e Me¢édia macro (macro avg): 0.98
e M¢édia ponderada (weighted avg): 0.98
Figura 2. Acurécia e perda do modelo CNN ao longo das 50 épocas de

treinamento. A acuracia de validacdo atingiu 98,0%, com curvas consistentes indicando

boa generalizacdo do modelo.
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Fonte: Autores, 2025.
Estes resultados superam significativamente os reportados por (Maxwell et al.,
2018) para classificagdo de vegetagao usando Random Forest (0.87) e SVM (0.82),
confirmando a superioridade da abordagem CNN para esta aplicagao.

Analise de Regides Representativas

Para demonstrar a aplicabilidade do sistema, foram selecionadas trés regides
com caracteristicas distintas:

Cerrado (-13.09, -46.36): Indice de Saude 0.69 (Moderada), com vegetagio
média como classe predominante (35,6%), como mostrada na Figura 3:
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Figura 3. A maior parte da area apresenta vegetacdo média (35,6%) e média alta
(28,4%), com presenga significativa de vegetacdo alta (18,9%) e média baixa (15,7%).
A classe de baixa vegetagdo representa apenas 1,4%, e ndo ha presenca relevante de

solo exposto.
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Fonte: Autores, 2025.

Amazbénia (-4.04, -59.81): Indice de Satude 0.80 (Excelente), com vegetagio alta
predominante (60,1%), como mostrada na Figura 4.
Figura 4. A classe de vegetagao alta ¢ predominante (60,1%), seguida por
vegetagdo média (11,7%) e média baixa (9,5%). As classes de solo exposto (1,8%) e
baixa vegetacdo (6,4%) estdo presentes em menor proporcao, indicando vegetacao

densa e bem preservada.
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Fonte: Autores, 2025.
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Area urbana (-23.5, -46.6): indice de Satde 0.10 (Critica), com solo exposto
predominante (74,7%), como mostrada na Figura 5.

Figura 5. A classe de solo exposto domina amplamente (74,7%), com baixa
vegetacdo (13,9%) e vegetacdo média baixa (5,3%) aparecendo em menor propor¢ao.
As demais classes de vegetacao sao residuais, refletindo a baixa cobertura vegetal da

regido.
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Fonte: Os autores, 2025.

A distribuicao de classes para a regido do Cerrado mostrou um padrao heterogéneo
caracteristico deste bioma, com presenca significativa de diferentes estratos de
vegetacao. Este resultado ¢ consistente com os encontrados por (Gandhi et al 2015), que
relataram alta heterogeneidade espacial em biomas de savana usando anélise NDVI.

O indice de satde na Amazodnia (0.80) é compativel com os valores reportados na
literatura para florestas tropicais intactas. Estudos como o de (Guo et al, 2015).
encontraram valores similares (0.80-0.89) em analises de séries temporais NDVI para
florestas tropicais.

Uma andlise temporal para uma regido agricola mostrou varia¢do significativa no
indice de satde vegetal: 0.37 na estacdo seca versus 0.72 na estacdo chuvosa. Essa
amplitude demonstra a sensibilidade do sistema a sazonalidade e confirma sua utilidade
para monitoramento de ciclos agricolas, corroborando os achados de Huang & Jensen
(1997) sobre variabilidade sazonal em indices de vegetacao.

A andlise dos resultados obtidos confirma a utilidade do NDVI como um indicador
primario para avaliacao da cobertura vegetal, especialmente quando combinado a outros
indices capazes de diferenciar corpos d’agua. No entanto, a interpreta¢do desses valores
requer atengdo ao contexto ecoldgico e geografico de cada area analisada, uma vez que
variacdes ambientais locais podem influenciar significativamente os padrdes
observados. A distribuicao das classes nas diferentes regides estudadas reflete as
caracteristicas intrinsecas dos biomas: a alta densidade de vegetacdo observada na
Amazonia, o padrao heterogéneo tipico do Cerrado e a predominancia de superficies
impermedveis nas areas urbanas. A classificagdo em seis niveis de vegetacdo mostrou-
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se eficiente para representar a gradagdo da cobertura vegetal em distintos contextos,
resultado que se aproxima das propostas de estratificacdo apresentadas por Xie et al.
(2008) em estudos de sensoriamento remoto da vegetagao.

Ao comparar o desempenho do modelo de redes neurais convolucionais (CNN) com
a classificacao tradicional por limiares, verificou-se que, embora a CNN apresente
maior capacidade de generalizagdo em paisagens complexas e consiga aprender padrdes
espaciais que vao além de valores absolutos, a abordagem por limiares mantém-se como
uma alternativa robusta, interpretavel e de baixo custo computacional. Os resultados
obtidos sdo coerentes com as observagdes de Ma et al. (2019), que destacam a
superioridade das abordagens de aprendizado profundo em cenérios com elevada
complexidade espacial, sem desconsiderar a relevancia de métodos tradicionais para
casos mais especificos.

O indice de satde vegetal desenvolvido neste estudo apresentou sensibilidade
adequada para diferenciar distintas condig¢des ecoldgicas, permitindo a criagdo de quatro
categorias que oferecem um quadro interpretativo de facil compreensdo para gestores
ambientais ¢ tomadores de decisdao. Entre as aplicagdes praticas possiveis, destacam-se
0 monitoramento ambiental voltado a deteccdo de degradagdo ou recuperagdo de areas
naturais, a agricultura de precisdo por meio da avaliacdo da satde de cultivos, a gestdo
florestal com énfase no acompanhamento de processos de desmatamento e regeneragao,
o planejamento urbano com avaliacdo da cobertura vegetal em areas densamente
ocupadas e a analise de impactos ambientais por meio de comparagdes antes e depois de
intervengodes. Tais aplicacdes convergem com as propostas apresentadas por Tamiminia
et al. (2020) para sistemas que utilizam o Google Earth Engine como base de
processamento e andlise em larga escala.

IV. CONCLUSAO

Este trabalho apresentou um sistema integrado para classifica¢do e andlise da satide
vegetal, baseado em indices espectrais derivados de imagens Sentinel-2, utilizando
processamento em nuvem via Google Earth Engine e classificagdo por meio de redes
neurais convolucionais. Os resultados demonstram a viabilidade e a eficacia da
abordagem proposta para aplicagdes em monitoramento ambiental, gestdo de recursos
naturais e agricultura de precisdo. A metodologia desenvolvida mostrou sensibilidade
adequada para capturar padrdoes complexos de vegetacdo em diferentes contextos
ecologicos. O indice de saude vegetal proposto revelou-se um indicador robusto e
interpretavel para a avaliagdo da condi¢do ecologica em multiplas escalas espaciais. As
analises comparativas entre biomas distintos evidenciaram a capacidade do sistema de
diferenciar estruturas de vegetagdo, desde florestas densas amazonicas (indice: 0,86) até
areas urbanas (indice: 0,29), com resultados consistentes com a literatura cientifica
existente. O desempenho do modelo CNN (acuracia de 98%) superou os métodos
tradicionais de classificagcdo relatados em estudos anteriores, confirmando o potencial
do aprendizado profundo para analises avangadas de sensoriamento remoto. Este estudo
representa um avango promissor na automagdo de sistemas de monitoramento
ambiental, ao combinar sensoriamento remoto, aprendizado profundo e computacao em
nuvem. Apesar das limitagdes atuais, os resultados obtidos sugerem forte aplicabilidade
pratica e indicam caminhos relevantes para pesquisas futuras, como a calibragdao
regional, a validagdo em campo e a integragdo multissensorial.
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