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Resumo – A previsão de demanda de energia elétrica constitui um desafio recorrente no 

planejamento energético, tanto para concessionárias quanto para grandes consumidores. A 

correta estimativa do perfil futuro de consumo permite reduzir custos operacionais, evitar 

penalidades e promover maior segurança no fornecimento de energia. O presente estudo 

aplica o modelo estatístico SARIMA sobre dados reais de demanda, faturadas entre janeiro 

de 2020 e dezembro de 2023, obtendo projeções para os doze meses de 2024. Diferentemente 

de estudos que utilizam abordagens de aprendizado de máquina, de maior complexidade, no 

presente trabalho empregou-se o modelo SARIMAX. A modelagem resultou em previsões 

mensais acompanhadas de intervalos de confiança de 90%, permitindo avaliar não apenas a 

tendência central, mas também a incerteza associada às estimativas. Os resultados 

demonstraram que o SARIMA é capaz de capturar o padrão sazonal e a tendência de 

crescimento observada no histórico, revelando-se uma ferramenta eficaz de apoio à tomada 

de decisão no planejamento energético. 

 

Palavras-chave: Previsão de demanda. Séries temporais. SARIMA.  

 

Abstract - Electricity demand forecasting remains a recurring challenge in energy planning, 

both for utilities and large consumers. Accurate estimation of future consumption profiles 

helps reduce operational costs, avoid penalties, and ensure greater reliability in energy 

supply. This study applies the statistical SARIMA model to real demand data billed between 
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January 2020 and December 2023, generating projections for the twelve months of 2024. 

Unlike studies that rely on more complex machine learning approaches, this work employs 

the SARIMAX model. The modeling produced monthly forecasts with 90% confidence 

intervals, allowing the assessment of not only the central trend but also the uncertainty 

associated with the estimates. The results demonstrate that SARIMA effectively captures both 

the seasonal pattern and the growth trend observed in the historical data, proving to be a 

reliable tool to support decision-making in energy planning. 

 

Keywords: demand forecasting. time series. SARIMA. 

I. INTRODUÇÃO  

No setor elétrico brasileiro, a demanda é definida como a maior média de 

potência requisitada em 15 minutos consecutivos, servindo de referência para 

planejamento e tarifação, conforme estabelecido pela Resolução nº 1000 da ANEEL 

(2021). A análise e a previsão desse indicador constituem tarefas centrais para o setor 

elétrico, uma vez que variações inesperadas podem comprometer tanto o equilíbrio 

econômico-financeiro das distribuidoras quanto a confiabilidade do fornecimento aos 

usuários finais (Wood; Wollenberg, 2012). 

A previsão de demanda permite antecipar comportamentos de consumo, 

possibilitando a adoção de estratégias preventivas. Entre tais estratégias destacam-se a 

adequação dos contratos de fornecimento, o dimensionamento da infraestrutura elétrica 

e a otimização do despacho de geração. Segundo Gellings (1985), iniciativas de gestão 

pelo lado da demanda (demand-side management) representam ferramentas eficazes 

para racionalizar o consumo, mas dependem, em grande medida, de projeções 

confiáveis sobre a evolução do uso de energia. 

O presente estudo parte de um problema concreto: como prever a demanda 

futura de um consumidor de médio porte, de forma a apoiar o planejamento energético 

do mesmo, utilizando-se os dados de demandas faturadas de quatro anos (2020–2023)? 

Para responder a essa questão, adota-se o modelo estatístico SARIMA, amplamente 

discutido na literatura de séries temporais (Box; Jenkins, 1970; Hyndman; 

Athanasopoulos, 2018). Esse modelo distingue-se por combinar componentes 

autorregressivos, médias móveis e diferenciações, além de incorporar estruturas 

sazonais, adequando-se, portanto, a séries que apresentam padrões recorrentes ao longo 

do tempo. 

Assim, este trabalho busca demonstrar a aplicação prática do SARIMA na 

previsão do perfil de demanda elétrica de um consumidor de médio porte, detalhando 

desde a fundamentação teórica até a obtenção de resultados gráficos e tabulares. A 

pesquisa insere-se em um contexto de crescente necessidade de ferramentas 

quantitativas de apoio ao planejamento energético, reforçando a relevância de métodos 

estatísticos transparentes, interpretáveis e de fácil implementação computacional. 

II. FUNDAMENTAÇÃO TEÓRICA 

A previsão de demanda é um desafio recorrente no setor elétrico, especialmente 

em ambientes industriais, onde variações no consumo impactam diretamente os custos 

de energia e a eficiência operacional. Métodos tradicionais de projeção, como médias 

móveis ou extrapolações lineares, muitas vezes não capturam adequadamente a 

sazonalidade, as tendências e os fatores externos que influenciam a carga (Silva et al., 

2021). Esse problema leva a estimativas menos precisas e decisões de contratação de 

energia que podem resultar em perdas financeiras ou riscos de sobrecarga. 
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A presente proposta busca superar essa limitação por meio da aplicação de 

modelos estatísticos robustos, com ênfase na utilização do método SARIMA, o qual se 

mostra adequado para capturar padrões de variabilidade e autocorrelação característicos 

de séries temporais. Um diferencial essencial do estudo é o uso de dados reais provindos 

de uma empresa de médio porte do setor de iluminação automotiva, localizada no sul de 

Minas Gerais, o que garante maior aderência do modelo às condições reais de consumo. 

Essa abordagem não apenas aumenta a precisão das previsões, mas também oferece 

suporte para um planejamento energético mais confiável e economicamente eficiente 

(Carvalho & Souza, 2022). 

A literatura apresenta diferentes abordagens para estimar o perfil de demanda 

elétrica, cada uma com vantagens específicas conforme a natureza dos dados e o 

horizonte de previsão. Entre os métodos mais empregados estão: 

2.1 – Métodos Clássicos de Previsão de Demanda 

Entre os métodos mais empregados para previsão de demanda destacam-se: 

• Modelos de Regressão: buscam relacionar a variável dependente 

(demanda) a variáveis independentes, como temperatura, atividade 

econômica ou número de consumidores. Embora úteis em análises de 

causalidade, apresentam limitações quando a série exibe forte 

autocorrelação (Gujarati; Porter, 2009); 

• Redes Neurais e Aprendizado de Máquina: têm sido aplicadas 

principalmente em horizontes de curto prazo, sendo capazes de capturar 

padrões não lineares (Hippert; Pedreira; Souza, 2001). No entanto, tais 

métodos demandam grande volume de dados e podem apresentar menor 

transparência interpretativa; 

• Método de Monte Carlo: consiste em simulações estocásticas que geram 

cenários de demanda baseados em distribuições de probabilidade. É útil 

para avaliação de riscos e incertezas (Metropolis; Ulam, 1949; Kroese et 

al., 2014), mas não produz previsões pontuais tão precisas quanto 

modelos estatísticos ajustados à série histórica; 

• Modelos de Séries Temporais: exploram diretamente a estrutura dos 

dados no tempo, considerando tendência, sazonalidade e ruído. Entre 

eles, destacam-se os modelos ARIMA e suas extensões sazonais, como o 

SARIMA (Box; Jenkins, 1970; Shumway; Stoffer, 2017). 

2.2 – Modelos de aprendizado de máquina 

Nas últimas décadas, técnicas de inteligência artificial, como redes neurais 

artificiais (RNA) e modelos baseados em aprendizado profundo, têm sido aplicadas à 

previsão de carga. Trabalhos clássicos destacam que redes neurais são capazes de 

aprender relações complexas entre variáveis explicativas e resposta (Hippert et al., 

2001). Mais recentemente, avanços com arquiteturas como LSTM (Long Short-Term 

Memory) têm ampliado a acurácia em séries de alta frequência, particularmente em 

mercados de energia (Lago et al., 2018). Apesar disso, esses métodos frequentemente 

requerem grandes volumes de dados para treinamentos eficazes, além de apresentarem 

menor interpretabilidade devido à complexidade de sua arquitetura e opacidade no 

processo decisório (Zhang et al., 2020) 

2.3 – Modelo ARIMA 
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O modelo ARIMA (Autoregressive Integrated Moving Average) é construído a 

partir de três componentes principais: 

 

Parte Autorregressiva (AR): a demanda em determinado período é explicada por 

valores passados da própria série conforme a equação (1). 

 

  

(1)     

onde  são parâmetros autorregressivos,  é o erro aleatório e é o valor da série 

temporal no instante t. 

 

Parte de Médias Móveis (MA): a demanda atual depende de erros passados. 

 

  (2)     

 

Diferenciação (I):a plicada para tornar a série estacionária, removendo 

tendência. O operador de diferenciação é representado por  , onde 𝑑 é o número de 

diferenças aplicadas. 

 

O modelo geral ARIMA(p,d,q) em que: 

p:ordem da parte autorregressiva (defasagens de ); 

d:ordem de diferenciação aplicada à série para torná-la estacionária; 

q:ordem de médias móveis (defasagens dos erros incluídos); 

 

que pode ser expresso conforme Equação (3): 

 

  (3)     

 

Onde B é o operador de defasagem  ,  é o polinômio autorregressivo e    

o polinômio de médias móveis. 

 

2.4 – Modelo SARIMA 

O modelo SARIMA (Seasonal ARIMA) estende o ARIMA ao incorporar efeitos 

sazonais, representados por um conjunto adicional de parâmetros sazonais (P,D,Q,s), 

em que: 

𝑃:ordem autorregressiva sazonal; 

𝐷:ordem de diferenciação sazonal; 

𝑄:ordem de médias móveis sazonais; 

𝑠:período da sazonalidade (12 para dados mensais). 

 

A formulação geral do SARIMA é: 

 

 
(4)     

 

Essa estrutura permite capturar tantas relações de curto prazo (autorregressivas e 

médias móveis não sazonais) quanto padrões cíclicos de longo prazo (componentes 

sazonais). 
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2.5 – Relevância do SARIMA na Previsão de Energia 

Estudos aplicados demonstram que o SARIMA é capaz de reproduzir o 

comportamento cíclico do consumo elétrico, especialmente em séries com periodicidade 

anual ou mensal (Chatfield, 2003; Hyndman; Athanasopoulos, 2018). Além disso, por 

fornecer intervalos de confiança, o método oferece informações adicionais sobre a 

incerteza associada às estimativas, aspecto essencial no planejamento energético 

(Armstrong, 2001). 

Assim, o SARIMA consolida-se como ferramenta robusta, transparente e 

amplamente aceita na literatura para previsão de séries temporais em energia elétrica. 

III. METODOLOGIA 

A metodologia adotada neste estudo seguiu a abordagem clássica de análise de 

séries temporais, proposta por Box e Jenkins (1970), estruturada em três etapas 

principais: identificação do modelo, estimação dos parâmetros e verificação da 

adequação. Além disso, a implementação prática foi conduzida em linguagem Python. 

3.1 – Coleta e organização dos dados 

Foram utilizados dados reais de demanda medida durante 5 anos de determinado 

consumidor do subgrupo A4, do ramo de lanternas automotivas, localizado no Sul de 

Minas Gerais. Foi utilizada os dados de 2020 a 2023 e organizada em frequência mensal 

regular resultando em 48 observações. 

 
Figura 1 – Dados obtidos. 

 
Fonte: Autores, 2025. 

3.2 – Pré-processamento da Série Temporal 

O pré-processamento incluiu a verificação de valores ausentes, padronização da 

frequência temporal e análise exploratória inicial. Essa etapa permitiu identificar 

tendências e variações sazonais, que foram posteriormente incorporadas ao modelo 

SARIMA. 

3.3 – Ajuste do modelo SARIMA 
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O ajuste do modelo foi realizado por meio do algoritmo auto_arima, que 

implementa estratégias de busca de parâmetros otimizados de acordo com critérios 

estatísticos como AIC (Akaike Information Criterion) e BIC (Bayesian Information 

Criterion). Foram considerados modelos com período de 12 meses, de modo a capturar 

a variação anual típica de séries de demanda de energia. 

(p,d,q)(P,D,Q)s=(1,1,1)(1,1,1)12 

onde: 

𝑝=1:um termo autorregressivo não sazonal; 

𝑑=1:primeira diferença não sazonal; 

𝑞=1:um termo de média móvel não sazonal; 

𝑃=1:um termo autorregressivo sazonal; 

𝐷=1:primeira diferença sazonal; 

𝑄=1:um termo de média móvel sazonal; 

𝑠=12:periodicidade anual, para dados mensais. 

 

Esse modelo foi escolhido por capturar adequadamente tanto a dependência 

temporal de curto prazo quanto os padrões sazonais observados. 

3.4 – Estimação dos Parâmetros 

A estimação dos parâmetros do modelo foi realizada via máxima 

verossimilhança, conforme implementado no statsmodels. O ajuste produziu 

coeficientes estatisticamente significativos para os termos AR e MA, tanto na parte 

sazonal quanto na não sazonal, corroborando a adequação da especificação escolhida. 

3.5 – Previsão e Intervalos de Confiança 

Após o ajuste, foram realizadas previsões para o horizonte de 12 meses, 

abrangendo o período de janeiro a dezembro de 2024. Além da estimativa pontual, 

foram calculados intervalos de confiança de 90% para cada mês. O intervalo de 

confiança é definido como: 

 

 (5)     

 

em que  é a previsão pontual para o período t,  é o erro padrão da previsão e   é o 

quantil da distribuição normal correspondente ao nível de confiança 

( ). 

 

A escolha do intervalo de 90% deve-se ao equilíbrio entre precisão e 

abrangência: um intervalo mais estreito poderia não captar adequadamente a incerteza, 

enquanto um mais amplo reduziria a utilidade prática da previsão. 

V. RESULTADOS 

Seguindo a metodologia apresentada, foi criado um código usando a linguagem 

de programação Python com o intuito de que esse recurso pudesse automatizar os 

passos estatísticos do Método SARIMA e assim modelar o respectivo caso de previsão 

de demanda. 

O gráfico que demonstra o levantamento e a tendência da demanda real em kW 

utilizados de base, demonstrado na Figura 2. 
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Figura 2 – Levantamento de tendência. 

 
Fonte: Autores, 2025. 

 

Para a obtenção dos parâmetros d e D calculou-se a diferenciação entre os meses 

(d=1) para remover a tendência. A figura 3 apresenta o gráfico com os resultados dessa 

diferenciação: 
Figura 3 – Resultados após a primeira diferenciação. 

 
Fonte: Autores, 2025. 

 

 

 

Com a primeira diferenciação pronta, aplicou-se a diferenciação com 

lag12(m=12). D=1 no objetivo de remover a sazonalidade. O gráfico com esse resultado 

pode ser encontrado na Figura 4: 
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Figura 4 – Resultados após diferenciação completa. 

 
Fonte: Autores, 2025. 

 

 

 

 

Com as diferenciações realizadas foram gerados os gráficos ACF e PACF para a 

série final estacionária, no objetivo da obtenção dos parâmetros p, q, P e Q. Os dois 

gráficos estão apresentados na Figura 5 de maneira respectiva: 

 
Figura 5 – Gráficos ACF e PACF. 

 
Fonte: Autores, 2025. 

 

Já com todos esses dados gráficos em mãos, agora é possível fazer a estimação 

dos parâmetros. Esta etapa é puramente computacional. Uma vez que se fornece as 

ordens do modelo SARIMA (1,1,1)(1,1,1,12), o software desenvolvido utiliza 

algoritmos de otimização, como a Estimação de Máxima Verossimilhança, para 

encontrar os coeficientes que melhor ajustam o modelo aos dados históricos.  

Após essa etapa é necessário fazer o diagnóstico e validação dos dados obtidos 

para verificar se o modelo ajustado é bom e confiável. O software analisa os resíduos do 

modelo ajustado. O principal teste é olhar o gráfico ACF dos resíduos, no qual pode ser 

visto abaixo: 
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Figura 6 – Gráficos ACF dos resíduos do modelo 

 
Fonte: Autores, 2025. 

 

Por fim, já com o modelo validado, é possível realizar a previsão mensal para o 

ano de 2024 junto com seu intervalo de confiança (IC) que foi utilizado no valor de 

90%. Por exemplo, para prever janeiro de 2024, o modelo utiliza os valores observados 

de dezembro de 2023 (para o componente p=1) e de janeiro de 2023 (para o 

componente P=1), os erros de previsão calculados para dezembro de 2023 (q=1) e 

janeiro de 2023 (Q=1) e os coeficientes estimados na Etapa 3 e assim repetindo o 

processo para todos os meses. 

Com isso é possível obter os valores da previsão mostrados na Tabela 1.: 

 
Tabela 1 – Previsão da demanda mensal em kW para 2024. 

Mês Demanda 

Prevista 

(kW) 

IC90% 

Inferior 

IC90% 

Superior 

Valor 

Real 

JUN 

JAN 290,25 270,48 310,02 312 99,37% 

FEV 308,63 281,97 335,29 326 97,23% 

MAR 303,92 271,98 335,87 341 98,50% 

ABR 293,34 257,04 329,64 333 98,99% 

MAI 310,98 270,94 351,02 338 96,29% 

JUN 324,73 281,40 368,06 344 93,46% 

JUL 327,29 281,01 373,57 330 88,34% 

AGO 335,06 286,10 384,02 345 89,84% 

SET 338,83 287,40 390,27 369 94,55% 

OUT 327,50 273,76 381,23 389 98,00% 

NOV 341,13 285,24 397,03 396 99,74% 

DEZ 331,61 273,66 389,55 390 99,88% 

 

Em que a assertividade é a precisão do valor real registrado em relação com o 

valor máximo da previsão (IC90% Superior). 

O gráfico mostrado na Figura 7, demonstra a relação entre todos esses valores: 
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 Figura 7 – Demanda prevista e valor real 

 
Fonte: Autores, 2025. 

V. ANÁLISE DOS RESULTADOS 

O A previsão realizada por meio do modelo SARIMA apresentou resultados 

consistentes, capazes de capturar tanto a tendência de crescimento quanto os efeitos 

sazonais da demanda elétrica. Essa capacidade se deve ao fato de que o modelo 

incorpora explicitamente componentes autorregressivos, de médias móveis e de 

diferenciação, ajustando-se à estrutura temporal observada nos dados históricos. 

A principal vantagem dessa abordagem está na geração de previsões 

determinísticas acompanhadas de intervalos de confiança. Isso significa que, para cada 

período futuro, é fornecida uma estimativa central (previsão pontual) e um intervalo de 

incerteza estatisticamente fundamentado. Essa característica é de grande relevância 

prática, pois permite ao planejador energético não apenas visualizar a evolução esperada 

da demanda, mas também avaliar cenários de risco de ultrapassagem de limites 

contratuais. 

Em contraste, métodos probabilísticos, como simulações de Monte Carlo, 

embora extremamente úteis para explorar incertezas e gerar cenários diversos, não 

fornecem de forma direta uma previsão estruturada da trajetória futura da série. O 

Monte Carlo depende da definição de distribuições de probabilidade, a priori, muitas 

vezes escolhidas com base em hipóteses simplificadas ou em conhecimento externo. O 

SARIMA, por sua vez, utiliza a própria informação contida nos dados históricos para 

estimar os parâmetros e projetar a evolução futura, garantindo maior aderência ao 

comportamento real observado. 

Outro ponto a destacar é a interpretação mais transparente do SARIMA. Por 

meio das funções de autocorrelação e autocorrelação parcial, é possível justificar a 

escolha do modelo e verificar sua adequação. Isso confere maior rigor estatístico ao 

processo e facilita a validação do método em contextos acadêmicos e corporativos. 

Métodos probabilísticos, embora poderosos em termos de simulação, tendem a ser 

menos interpretáveis e mais dependentes de premissas de modelagem. 

Por fim, observa-se que os resultados obtidos alinham-se ao esperado para séries 

temporais de consumo de energia: tendência de crescimento gradual e manutenção de 
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sazonalidade anual. A coerência entre histórico e previsão reforça a confiabilidade do 

modelo, tornando-o uma ferramenta útil para apoio ao planejamento energético, 

sobretudo em horizontes de curto prazo (até 12 meses), nos quais a acurácia do 

SARIMA é maximizada. 

V. CONCLUSÃO 

O objetivo central do presente trabalho foi aplicar o modelo SARIMA à previsão 

da demanda mensal de energia elétrica, utilizando dados históricos de 2020 a 2023 e 

projetando valores para 2024. A metodologia de Box-Jenkins mostrou-se adequada, 

uma vez que a série analisada apresentou características típicas de séries temporais com 

tendência e sazonalidade, exigindo diferenciações regular e sazonal. 

Os resultados demonstraram que o modelo SARIMA (1,1,1)(1,1,1)12 conseguiu 

reproduzir satisfatoriamente o comportamento da série, capturando tanto a tendência de 

crescimento gradual quanto a sazonalidade anual. A previsão para 2024 apresentou 

valores crescentes mês a mês, em conformidade com o padrão observado no histórico. 

Além disso, os intervalos de confiança de 90% forneceram uma visão clara da incerteza 

associada às projeções, permitindo que o processo de tomada de decisão seja realizado 

de forma mais segura e fundamentada. 

Em comparação a métodos puramente probabilísticos, como as simulações de 

Monte Carlo, a abordagem SARIMA mostrou vantagens em termos de previsão pontual 

estruturada, transparência estatística e interpretabilidade. Embora métodos 

probabilísticos sejam úteis para explorar cenários de risco, a modelagem baseada em 

séries temporais ajusta-se de maneira mais direta aos dados históricos, oferecendo 

previsões quantitativas alinhadas com a realidade observada. 

Entre as limitações do estudo, destaca-se a extensão relativamente curta da base 

de dados, composta por apenas quatro anos. Um horizonte temporal maior poderia 

permitir a detecção de ciclos de mais longo prazo e aprimorar a robustez do modelo. 

Ademais, fatores externos, como variações econômicas, mudanças climáticas ou 

políticas energéticas, não foram incorporados à modelagem, mas podem influenciar 

significativamente a demanda. 

Como perspectivas futuras, sugere-se a integração do SARIMA com técnicas 

híbridas, combinando previsões estatísticas com métodos de simulação probabilística, 

como Monte Carlo, de modo a enriquecer a análise de risco. Além disso, a inclusão de 

variáveis explicativas externas em modelos SARIMAX pode ampliar a capacidade de 

previsão, permitindo avaliar impactos de fatores climáticos e macroeconômicos. 

Conclui-se, portanto, que o modelo SARIMA é uma ferramenta robusta e 

confiável para previsão de curto prazo da demanda de energia elétrica, contribuindo de 

forma efetiva para o planejamento e a gestão no setor. 
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